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Introduction 
When contamination with an unknown source history 

and/or prior location is detected in rivers or aquifers, one 
important question to the hydrologic community is when 
and/or where the contaminant originated. This problem is 
addressed by backward probability, which is an inverse 
advection-dispersion modeling problem. Particularly, the 
backward location probability describes the contaminant's 
possible location at a previous time, and the backward 
travel time probability describes possible time for it to 
reach the sampling location from an upgradient location. 
They have been used extensively in many water quality 
related studies, including the identifications of pollutant 
sources and the delineation of well-head protection zones. 
Previous methods typically rely on the inverse of the 
classical advection-dispersion equation (ADE) to 
calculate the backward probabilities. The natural media 
heterogeneity however can not be represented adequately 
by a local transport model. This study extends and inverts 
stochastic descriptions of solute dynamics based on the 
space fractional advection-dispersion equation (fADE) 
model to address the influence of heterogeneity in fractal 
media on backward probabilities. 

 
Inverse model of the space fADE  

Superdiffusion of a passive tracer in a flow field with 
spatially-varying velocity v and dispersion coefficient D 
can be modeled by the following space fADE 
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with a general initial condition 
(2)                         )()0,( xCtxC i==  
where C is the resident concentration, t is time, x is the 
spatial coordination, 21 ≤≤α  is the order of a Riemann-
Liouville fractional derivative, and Iq  and OQ  is the 
source inflow and sink outflow rate, respectively. We 
start to derive the inverse model of fADE with infinite 
boundaries 
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By combining the adjoint probability method 
developed by Neupauer and Wilson [1] and the 

fractional-order adjoint operator proposed by Zhang et al. 
[2], we construct the backward model for the space fADE 
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where Φ  is the adjoint state, h is the performance 
function, s=T-t is the backward time, and T is the 
detection time. 

Other forms of the space fADE are possible, and the 
corresponding inverse models can be built using the same 
methodology developed in this study. 

 
Numerical solutions and examples 

We solve the backward probability model numerically 
using a random walk particle tracking scheme.  The 
solution is cross-verified by an implicit Eulerian finite 
difference method.  Fig. 1 compares backward ADE and 
fADE solutions for one example aquifer. 
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α = 1.5
v = 1
D = 5
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Figure 1. Backward location PDF at backward time 

s=50, with the detection well located at x=0. 
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